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c Dipartimento di Matematica, Universitá di Ferrara, Via Machiavelli 35, 44100 Ferrara, Italy

Received 12 April 2005; received in revised form 15 November 2005; accepted 17 November 2005
Available online 4 January 2006

Dedicated to David Gottlieb on the occasion of his 60th anniversary.
Abstract

The main goal of this article is to investigate the capability of an operator-splitting/finite elements based methodology
at handling accurately incompressible viscous flow at large Reynolds number (Re) in regions with corners and curved
boundaries. To achieve this goal the authors have selected a wall-driven flow in a semi-circular cavity. On the basis of
the numerical experiments reported in this article it seems that the method under investigation has no difficulty at capturing
the formation of primary, secondary and tertiary vortices as Re increases; it has also the capability of identifying a Hopf
bifurcation phenomenon taking place around Re = 6600.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

It is the opinion of these authors that, in the context of numerical methods for incompressible viscous flow,
few problems have motivated such a large number of publications as the wall-driven square cavity one (actu-
ally, it has even motivated dedicated workshops where various solution methods have been compared). Rea-
sons for this popularity are easy to identify, the main ones being that: (i) the flow region is two-dimensional
and (ii) the simplicity of the geometry, and of the boundary conditions, gives an equal chance to various type
of approximations and solution methods, such as finite differences, finite elements, spectral analysis, lattice
Boltzmann, multi-grid, etc. The number of publications dedicated to the wall-driven incompressible viscous
flow problem in a square cavity is so large that giving a comprehensive subset of the related references has
become an impossible task; focusing on what we know best let us mention [1,2,6–8,14,16] (many of the various
references therein are also worth consulting). Our primary goal here is to investigate the ability of the finite
elements/operator-splitting techniques discussed in [8] at handling flow regions with corners and curved
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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boundaries, and this at Reynolds numbers large enough so that Hopf bifurcation phenomena may take place.
To achieve the goal stated above, we selected a wall-driven semi-circular cavity flow problem thinking that,
among other things, it will be interesting to see in what aspects the solutions of this new problem will differ
from those of the previous one. A secondary goal is of course to introduce a new test problem, which we hope
(without believing it very seriously) may become as popular as the other one. It is clear that the polar coor-
dinate-based approximation method discussed in [3] applies to the problem considered here, however it relies
on weighted Sobolev spaces more complicated to handle than the functional spaces employed in the present
article; indeed, the numerical experiments presented in [3] correspond to Reynolds number much lower than
those considered here.

The paper is organized as follows. In Section 2, we introduce the formulation of the problem and then we
discuss the space and time discretizations in Section 3. Numerical results are presented in Section 4. They
include a comparison with some experimental data presented in [13].

2. Formulation of the problem

An incompressible viscous fluid fills a semi-circular cavity where the straight part of the boundary C1 is
translating with an assigned velocity, the curvilinear part C0 being motionless, see Fig. 1. The domain occupied
by the fluid is then the two-dimensional region of space
X ¼ x ¼ ðx1; x2Þ 2 R2 jx2 < 0; x2
1 þ x2

2 < 1=4
� �
and its flow in X · (0, T), T > 0, is governed by the Navier–Stokes equations:
r � u ¼ 0; ð2:1Þ
ut þ ðu � rÞu ¼ �rp þ mDu; ð2:2Þ
equipped with the initial and boundary conditions:
ujt¼0 ¼ u0 with r � u0 ¼ 0 and u0 � n ¼ 0 on C;

u ¼ g on C� ð0; T Þ with

Z
C

gðtÞ � ndC ¼ 0 on ð0; T Þ.
ð2:3Þ
Here u and p are the flow velocity and pressure, m is the fluid kinematic viscosity, while n is the unit outward
normal vector at the boundary C = oX = C1 [ C0. In (2.3) (and below) we use the notation u(t) to denote the
function x! u(x, t).

We observe that since the upper wall is translating in the horizontal direction we have g(t) Æ n = 0 on C1 for
0 < t < T, while g(t) = 0 on C0 for 0 < t < T. Suppose now that in the neighborhood of the corners we regu-
larize the wall velocity g by gd (d being a ‘‘small’’ parameter converging to zero) so that we have gd(t) Æ n = 0 "t
and gd(t) 2 (H1/2(C))2. In order to write a variational formulation for the problem (2.1)–(2.3) we first introduce
the following functional spaces:
V gðtÞ ¼ fv jv 2 ðH 1ðXÞÞ2; v ¼ gðtÞ on Cg; ð2:4Þ
V 0 ¼ fv jv 2 ðH 1ðXÞÞ2; v ¼ 0 on Cg; ð2:5Þ

L2
0ðXÞ ¼ fq jq 2 L2ðXÞ;

Z
X

qdx ¼ 0g; ð2:6Þ
Fig. 1. Wall-driven flow in a semi-circular cavity.
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after dropping the subscript d from gd. The regularity of g implies that Vg(t) is not empty. Now, we multiply
Eqs. (2.1) and (2.2) by the test functions v 2 V0 and q 2 L2(X), respectively. The resulting equations are inte-
grated over X to obtain the variational formulation of (2.1)–(2.3):
F

For a.e. t > 0; find uðtÞ 2 V gðtÞ; pðtÞ 2 L2
0ðXÞ; such thatZ

X
ut � vdxþ

Z
X
ðu � rÞu � vdx�

Z
X

pr � vdxþ m
Z

X
ru : rvdx ¼ 0 8v 2 V 0;Z

X
qr � udx ¼ 0 8q 2 L2ðXÞ;

ujt¼0 ¼ u0 with r � u0 ¼ 0.

ð2:7Þ
If g(0) Æ n = u0 Æ n (=0 here), one can show the existence of a solution for problem (2.7) (see for example the
discussion in [10,11]).

3. Space and time discretizations

The domain X is clearly non-polygonal because of the curved portion C0 of the boundary. To approximate
velocity and pressure, we use here an isoparametric version (discussed in, e.g., [8, Chapter 5]) of the Bercovier–

Pironneau finite elements method also known as the P1 � iso � P2 and P1 finite elements approximation. This
approximation was introduced in [4] and further discussed in, e.g., [9,15].

We introduce a triangulation Th of the two-dimensional domain X with discretization step h and we
decompose it as Th ¼TRh [T0h, where
TRh ¼ fT jT 2Th; the three edges of T are rectilinearg; ð3:1Þ
T0h ¼ fT jT 2Th; T has one curvilinear edge with the two extremities on C0g. ð3:2Þ
Every rectilinear triangle T 2TRh is divided into four sub-triangles KiT, i = 1,2,3,4 by joining the
midpoints of its edges. On the other hand, every curved triangle T 2T0h is approximated by the quadrilateraleT obtained by joining the midpoints of the two rectilinear edges and the midpoint of the curved one. Then, the
quadrilateral eT is divided into four sub-triangles KiT, i = 1,2,3,4 as in the previous case (see Fig. 2).

To construct the velocity spaces we introduce
eP 2ðT Þ ¼
fq jq 2 C0ðT Þ; qjKiT

2 P 1; 8i ¼ 1; 2; 3; 4g if T 2TRh;

fq jq 2 C0ðeT Þ; qjKiT
2 P 1; 8i ¼ 1; 2; 3; 4g if T 2T0h;

(
ð3:3Þ
where C0ðT Þ (resp. C0ðeT Þ) is the space of the functions continuous over T (resp. eT ), and P1 is the space of
polynomials with degree less or equal to one. Similarly, the following three-dimensional subspace of eP 2ðT Þ
will be useful to construct the pressure spaces:
eP 1ðT Þ ¼ fq jq 2 eP 2ðT Þ; qðaijT Þ ¼ ðqðaiT Þ þ qðajT ÞÞ=2; 8i; j; 1 6 i; j 6 3; i 6¼ jg; ð3:4Þ

where aiT, i = 1,2,3, are the vertices of T, while aijT, with i, j = 1,2,3, are the midpoints of the (curved or
rectilinear) edges of vertices aiT and ajT. We use the convention aijT = ajiT, "i,j, i 6¼ j.
ig. 2. Triangulation of the domain: subdivision of a rectilinear triangle (on the left) and of a curved triangle (on the right).
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Thus, we define fT0h ¼ feT gT2T0h
and fTh ¼TRh [fT0h; the discrete approximation of the domain X is

given by Xh ¼ interior of
S

K2eTh
K and Ch = oXh. Finally, we define the pressure and velocity finite element

spaces as
P h ¼ fqh jqh 2 C0ðXhÞ; qhjT 2 P 1; 8T 2TRh; qhjeT 2 eP 1ðT Þ; 8T 2T0hg; ð3:5Þ

V h ¼ fvh jvh 2 ðC0ðXhÞÞ2; vhjT 2 ðeP 2ðT ÞÞ2; 8T 2TRh; vhjeT 2 ðeP 2ðT ÞÞ2; 8T 2T0hg. ð3:6Þ
Let us now consider the time discretization. The main difficulties related to the numerical solution of
problem (2.7) are: (a) the incompressibility condition and the related unknown pressure and (b) the advection
term. Operator-splitting method allows to associate to each of them a specific operator and among the many
Fig. 3. Example of triangulation Th on X.

Fig. 4. Streamlines of the steady states reached for different Reynolds numbers.
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versions available we advocate a very simple one which is first-order accurate [12]. The low-order accuracy is
actually compensated by easy implementation, less cost in computational time, good stability and robustness
properties.

Let Dt be the time discretization step and tn = nDt, un
h ¼ uhðtnÞ, pn

h ¼ phðtnÞ. Let us define the following
spaces:
V ghðtÞ ¼ fvh jvh 2 V h; vh ¼ ghðtÞ on Chg;
V nþ1

gh
¼ V ghðtnþ1Þ;

P 0h ¼ fqh jqh 2 P h;

Z
Xh

qh dx ¼ 0g;

V 0h ¼ fvh jvh 2 V h; vh ¼ 0 on Chg;
V nþ1;�

0h ¼ fvh jvh 2 V h; vh ¼ 0 on Cnþ1;�
h g;

Cnþ1;�
h ¼ fx jx 2 Ch; ghðtnþ1Þ � nðxÞ < 0g.
For n P 0, un being known, the scheme consists of solving the following problems:

1. Find unþ1=3 2 V nþ1
gh

and pn+1/3 2 P0h such that
R
Xh

unþ1=3 � un

Dt � vdx�
R

Xh
pnþ1=3r � vdx ¼ 0 8v 2 V 0h;R

Xh
qr � unþ1=3 dx ¼ 0 8q 2 P h.

8<: ð3:7Þ
2. Find un+2/3 2 Vh via the solution of the following pure advection problem in X · (tn,tn+1)
Fig. 5. Vorticity contours of the steady states reached for different Reynolds numbers.
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R
Xh

ut � vdxþ
R

Xh
ðunþ1=3 � rÞu � vdx ¼ 0 8v 2 V nþ1;�

0h ;

uðtnÞ ¼ unþ1=3;

u ¼ ghðtnþ1Þ on Cnþ1;�
h � ðtn; tnþ1Þ;

8><>: ð3:8Þ
and then set un+2/3 = u(tn+1).
3. Find unþ1 2 V nþ1

gh
such that
Z

Xh

unþ1 � unþ2=3

Dt
� vdxþ m

Z
Xh

runþ1 : rvdx ¼ 0 8v 2 V 0h. ð3:9Þ
Above we have been assuming that gh is an approximation of g continuous in space and time, vanishing at
(1/2, 0) and (�1/2,0), and such that gh Æ n = 0 on Ch.

The backward Euler’s method has been used to derive the time discretization in (3.7) and (3.9). Problem
(3.7) can be seen as a ‘‘degenerated’’ discrete Stokes problem (also called divergence free L2-projection) for
which efficient solution methods already exist as shown in, e.g., [8]. Problem (3.9) is a discrete elliptic system
which is quite a classical problem. The advection step (3.8) has been solved using a wave-like equation method
[5,8,14]: this approach (described in Appendix A) preserves the hyperbolic nature of advection, it does not
introduce numerical dissipation and it is easy to implement. It consists in replacing problem (3.8) by the
following wave-like equation one in Xh · (tn,tn+1):
Fig. 6. Isobars of the steady states reached for different Reynolds numbers.



Table 1
Values used to plot the contours of the stream function, the vorticity and the pressure

Contours Values

Stream function �0.07, �0.0675, �0.065, �0.05, �0.04, �0.03, �0.02, �0.01, ±1 · 10�4, ± 1 · 10�5, ±1 · 10�7, �1 · 10�10,
0.0, 1 · 10�8, 1 · 10�6, 5 · 10�4, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01

Vorticity �4.85, �4.0, �3.0, �2.0, �1.0, �0.5, 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0
Pressure �0.1, �0.09, �0.08, �0.07, �0.06, �0.05, �0.04, �0.03, �0.02, �0.01, 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,

0.07, 0.08, 0.09, 0.1

Table
Locati

Re

1000
2000
3000
5000
6600

Table
Locati

Re

1000
2000
3000
5000
6600

Table
Angles

Re

1000
1500
2000
2500
3000
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R
Xh

utt � vdxþ
R

Xh
ðunþ1=3 � rÞu � ðunþ1=3 � rÞvdxþ

R
ChnCnþ1;�

h
ðghðtnþ1Þ � nÞðou

ot � vÞdC ¼ 0 8v 2 V nþ1;�
0h ;

uðtnÞ ¼ unþ1=3;R
Xh

utðtnÞ � vdx ¼ �
R

Xh
ðunþ1=3 � rÞunþ1=3 � vdx 8v 2 V nþ1;�

0h ; utðtnÞ 2 V nþ1;�
0h ;

u ¼ ghðtnþ1Þ on Cnþ1;�
h � ðtn; tnþ1Þ.

8>>>>><>>>>>:
ð3:10Þ
We have solved problem (3.10) using a second-order accurate time discretization scheme which is discussed in,
e.g., [8, Chapter 6] and [14]. For those readers wondering why to use a second-order accurate scheme while the
global scheme is first order, let us say that: (1) the second order centered in space-centered in time scheme that
we use is the simplest one we can think of. It is explicit if one uses numerical integration to have a diagonal
mass matrix with the term utt; (2) being non-dissipative, the above scheme does not introduce numerical
viscosity as upwinding schemes do, and even as the method of characteristic does (albeit much less).
2
on of the point where the minimum wmin of the stream function is reached at different Re with mesh size hv

hv wmin Location

1/128 �0.0780 (0.6156,�0.2029)
1/192 �0.0765 (0.6329,�0.2042)
1/192 �0.0747 (0.6548,�0.2031)
1/192 �0.0726 (0.6809,�0.1988)
1/256 �0.0673 (0.7006,�0.1894)

3
on of the point where the minimum wmin of the stream function is reached at different Re with smaller mesh size hv

hv wmin Location

1/192 �0.0779 (0.6214,�0.2030)
1/256 �0.0763 (0.6359,�0.2052)
1/256 �0.0742 (0.6514,�0.2027)
1/256 �0.0700 (0.6833,�0.1936)
1/300 �0.0670 (0.7009,�0.1891)

4
of detachment of the secondary vortex (the angles are given in degrees)

h1 h2

21.42 71.49
14.21 86.51
10.78 94.34
9.54 100.30
7.77 104.53



Fig. 7. Sketches of the angular variables for the locations of the separation and reattachment points.
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4. Numerical experiments

The investigation of the stability of this wall-driven cavity flow is performed by running simulations for
different values of the Reynolds number Re defined as Re = UD/m, where U is the characteristic velocity of
the fluid, D is the characteristic length of the domain and m is the kinematic viscosity of the fluid. We have
taken U equal to the norm of the sliding velocity of the upper wall and D equal to the diameter of the cavity,
Table 5
Angles of detachment of the secondary and tertiary vortices (the angles are given in degrees)

Re h1 h3 h4 h2

5000 6.70 57.54 73.84 117.09
5500 6.70 57.54 78.67 118.96
6000 5.59 58.15 81.48 122.42
6500 5.59 58.15 85.13 123.41

Fig. 8. Variation of the angles of detachment of the vortices as a function of the Reynolds number (the angles are given in degrees).

Fig. 9. Streamlines computed for Re = 1000 at t = 3.48.



Fig. 10. The dashed line represents the u1-velocity component along the line x1 = 1/2, while the solid line represents the u2-velocity
component along the line x2 = �1/4.
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implying therefore that U = 1 and D = 1. Finally, in the particular case considered here, the Reynolds number
reduces to Re = 1/m.

We take the Dirichlet data for the velocity in the form:
Table
Selecte

x2

0.000
�0.050
�0.100
�0.150
�0.200
�0.250
�0.300
�0.350
�0.400
�0.500

Table
Selecte

x1

0.0669
0.2388
0.3255
0.4123
0.4991
0.5859
0.6726
0.7594
0.8462
0.9330
gðtÞ ¼
/ðtÞe1 on C1;

0 on C0;

�
ð4:1Þ
where e1 = (1,0) and
/ðtÞ ¼ 1� e�20t if 0 < t 6 0:5;

1; if t > 0:5.

�
ð4:2Þ
It follows from (4.1) that Cn+1,� = ;, implying in turn that V nþ1;�
0h ¼ V h. The above data have been smoothed

in time to avoid possible difficulties associated with a genuine impulse. Concerning the initial conditions, we
take u0 = 0 for Re = 500 and then for other values of Re we take as u0 the steady-state solution obtained at the
previous Reynolds number in the sequence 500, 1000, 2000, 3000, 5000 and 6000. When the Reynolds number
is large enough, the solution does not reach a steady state any more but shows an oscillatory behavior: we then
proceed by bisection to narrow the range of Re for which the Hopf bifurcation occurs.

For the time discretization, we have taken Dt = 0.0005. As mentioned in Section 3, we solve the advection
step using a wave-like equation method which requires the specification of a time substep: here we have chosen
it equal to Dt/5. The velocity u has been approximated by continuous piecewise affine vector-valued functions
on a triangulation Th, like the one shown in Fig. 3, with mesh size hv. The pressure is defined on a triangu-
lation twice coarser. In the simulations, the solution is considered a steady state when the following condition
is satisfied:
kun � un�1kL2ðXÞ

kunkL2ðXÞ
< 10�7. ð4:3Þ
6
d numerical values of the u1-velocity component along the line x1 = 1/2

Re = 500 Re = 1000 Re = 2000 Re = 3000 Re = 5000 Re = 6600

00 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
10 0.46625 0.44242 0.42521 0.39517 0.29522 0.15920
20 0.26222 0.31359 0.30099 0.26678 0.20265 0.14022
30 0.12258 0.16051 0.14456 0.12047 0.07784 0.04243
40 �0.03376 0.00301 0.00185 �0.01272 �0.04437 �0.07306
50 �0.18879 �0.14617 �0.13209 �0.14042 �0.17134 �0.19506
60 �0.31375 �0.29153 �0.26443 �0.26917 �0.30537 �0.23003
70 �0.35530 �0.40361 �0.39444 �0.39163 �0.28595 �0.06390
80 �0.27589 �0.35822 �0.36203 �0.27661 �0.04091 0.01971
00 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

7
d numerical values of the u2-velocity component along the line x2 = �1/4

Re = 500 Re = 1000 Re = 2000 Re = 3000 Re = 5000 Re = 6600

9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0 0.10367 0.07459 0.01216 0.01037 �0.00305 �0.01452
8 0.18824 0.24697 0.18202 0.06717 0.05610 0.04230
6 0.23944 0.31890 0.39541 0.42304 0.17885 0.07508
3 0.18411 0.18388 0.22515 0.28061 0.40440 0.46982
1 0.05868 0.04097 0.07049 0.10814 0.18982 0.24504
8 �0.07432 �0.08632 �0.06988 �0.04622 0.00598 0.04843
6 �0.22684 �0.21315 �0.20941 �0.19815 �0.17138 �0.13862
4 �0.42578 �0.42124 �0.37485 �0.36123 �0.36417 �0.34359
1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
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Steady states were reached for Reynolds numbers up to 6600. Streamlines, vorticity contours and isobars of
the steady states reached for Re = 500, 1000, 2000, 3000, 5000 and 6600 are reported in Figs. 4–6 together with
the mesh size used. The values used to plot the contours are listed in Table 1. When the Reynolds number is
small, the final steady state consists of one vortex only (see Re = 500 in Fig. 4). As the Reynolds number in-
creases, first a secondary vortex and then a tertiary vortex arise, as we can see in Fig. 4. The size of the vortices
depends on the Reynolds number too.

In the square cavity, a major vortex is occupying the central part of the domain, while minor vortices
appear at the lower corners and at the top-left (see e.g. [14]). In the case of semi-circular cavity, the vortices
are developing at the bottom and as the Reynolds number increases, they grow pushing the main vortex to the
right part of the cavity. Actually this phenomenon is tracked by the point where the minimum value of the
stream function W is attained. In Table 2, we have summarized the minimum value of W and its location
for the steady states reached at Re = 1000, 2000, 3000, 5000 and 6600, computed with mesh size hv = 1/128,
1/192, 1/192, 1/192, 1/256, respectively.

We repeated the computations using finer meshes and the results agree with those previously obtained in
terms of streamlines, vorticity contours and isobars of the steady states reached at different Reynolds numbers.
Fig. 11. Evolution of the L2-norm of the velocity before the Hopf bifurcation (Re = 6600).

Fig. 12. Evolution of the L2-norm of the velocity beyond the Hopf bifurcation (Re = 6650).
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In Table 3, we have reported the minimum value of the stream function and its location computed at different
Reynolds number using the set of finer meshes.

It took about 3.84 s/time step to run the simulations at Re = 5000, hv = 1/256 with 31,952 vertices and
63,244 triangles for the velocity mesh, on a AMD Opteron(tm) Processor 248, CPU 2.2 GHz.

The location of the secondary and tertiary vortices is identified by the position of their end points on the
curved edge of the cavity. In Table 4, we have collected the results for Reynolds numbers between 1000 and
3000: in this range the solution evolves to a steady state with a secondary vortex only. Then the angles h1 and
h2 reported in the table are the angles with respect to the center of the disk between the upper-left corner and
the points on the curved boundary where the secondary vortex starts and ends, respectively, as shown in Fig. 7.
When the Reynolds number exceeds 5000 then a tertiary vortex appears and the results are shown in Table 5.
Here h1 and h2 are the angles locating the secondary vortex, while h3 and h4 correspond to the tertiary vortex,
see Fig. 7. A recapitulative graph is drawn in Fig. 8.

Experiments performed by Migeon et al. [13] show that the shape of the flow establishment phase in a lid-
driven semi-circular cavity at Re = 1000 consists of only one recirculation vortex, without any secondary flow
Fig. 13. Evolution of the L2-norm of the velocity beyond the Hopf bifurcation (Re = 6700).

Fig. 14. Oscillations in time of the L2-norm of the velocity for Re = 6650 (on the left). Two-dimensional phase portrait of the L2-norm of
the velocity at Re = 6650, s = 0.8 (on the right).
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recirculation zone. Their final time of observation is t* = 12, where t* = V0t/B is a dimensionless time, t being
the physical time, V0 = 1.8 cm/s the constant speed of the sliding cavity wall and B = 6.2 cm the diameter of
the cavity. Therefore, the final physical time of observation is t = 3.48. In Fig. 9, we report the streamlines
computed with our numerical scheme for Re = 1000 at t = 3.48 and their agreement is very satisfactory, at
least qualitatively (see [13, Fig. 5, p. 476]). Our numerical computations show that a secondary vortex will
eventually appear, actually its formation begins approximately at t . 6.

In Fig. 10, we have plotted in dashed line the u1-velocity component along the line x1 = 1/2 (the values are
meant to be read on the horizontal axis), while the solid line represents the u2-velocity component along the
line x2 = �1/4 (the values are meant to be read on the vertical axis). As shown in Fig. 3, our mesh is not struc-
tured and therefore the curves in Fig. 10 have been obtained via interpolation. A selection of the interpolated
numerical values corresponding to the profiles in Fig. 10 are listed in Tables 6 and 7.

At Re = 6650, we are beyond a Hopf bifurcation point. We have reported in Figs. 11–13 the evolution of
the L2-norm of the velocity in the neighborhood of the critical point. For Re = 6600, a steady state is reached:
the L2-norm of the velocity gets flat and eventually condition (4.3) is verified around t = 400. As Re exceeds
6650, the L2-norm of the velocity shows an oscillatory behavior. In Fig. 14, we draw a more detailed picture of
these oscillations for Re = 6650. We also show a phase portrait obtained by plotting the L2-norm of the veloc-
ity at time t and at a delayed time t + s, as in [2]. The choice s = 0.8 leads to the graph in Fig. 14. In order to
Fig. 15. One complete cycle of streamlines contours (from left to right, from top to bottom; Re = 6700).



Fig. 16. One complete cycle of vorticity contours (from left to right, from top to bottom; Re = 6700).
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ensure that the computed periodic solution is not a numerical artifact, we have performed simulations at
Re = 6650 with three sets of mesh size and time step, namely (hv,Dt) = (1/256, 5 · 10�4), (hv,Dt) = (1/
300,5 · 10�4), (hv,Dt) = (1/256, 2.5 · 10�4). For the substep in the advective part, we have always kept Dt/
5. As period of the oscillations for the different settings, we found 1.243, 1.241 and 1.229, respectively. In addi-
tion, the period appears to be a non-decreasing function of the Reynolds number: for Re = 6700, 7000, 8000
the period is 1.243, 1.244, 1.262, respectively.

In Fig. 15, we have plotted eight pictures of the streamlines contours showing the evolution of the solution
at Re = 6700 during one whole period. The most significant change is the oscillation of the secondary and ter-
tiary vortices in the lower part of the cavity. The evolution of the vorticity contours is shown in Fig. 16. Here
oscillations appears at the upper corners. The behavior of isobars during one period offers the most pro-
nounced oscillatory pattern. In Fig. 17, we can see that the isobar located in the left half of the cavity is split-
ting and merging with the isobar at its right.
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Fig. 17. One complete cycle of isobars (from left to right, from top to bottom; Re = 6700).
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Appendix A

In Section 3, we mentioned that we used a so-called ‘‘wave-like equation’’ method to solve the advection
subproblems (3.8) obtaining thus the subproblems (3.10). Owing to the importance of the wave-like equation
concerning this article, we are going to discuss it in this Appendix A.

Problem (3.8) follows from the space discretization of
ut þ ðunþ1=3 � rÞu ¼ 0 in X� ðtn; tnþ1Þ;
u ¼ gðtnþ1Þ on Cnþ1;� � ðtn; tnþ1Þ;
uðtnÞ ¼ unþ1=3

8><>: ðA:1Þ
with Cn+1,� = {x |x 2 C,g(tn+1) Æ n < 0}, and $ Æ un+1/3 = 0. For the particular problem discussed in this article,
the set Cn+1,� is empty, however, for the sake of generality, we keep here the possibility of Cn+1,� 6¼ ;.

The components of the solution u of problem (A.1) are solutions of a pure advection problem of the fol-
lowing form:
ut þ V � ru ¼ 0 in X� ðtn; tnþ1Þ;
u ¼ g on C� � ðtn; tnþ1Þ;
uðtnÞ ¼ u0

8><>: ðA:2Þ
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where (i) The functions g and u0 are given, with gt = 0. (ii) $ Æ V = 0 with Vt = 0. (iii) The subset C� of oX is
defined by C� = {x jx 2 C,V(x) Æ n(x) < 0}, n being the outward unit normal vector at C.

We can easily show that (A.2) implies (formally, at least) that for a.e. t 2 (tn, tn+1) we have
Z
X

uttvdxþ
Z

X
ðV � ruÞðV � rvÞdxþ

Z
CnC�

V � nutvdC ¼ 0 8v 2 H 1;�ðXÞ; ðA:3Þ
where H1,�(X) = {v |v 2 H1(X),v = 0 on C�}, with the boundary and initial conditions:
u ¼ g on C� � ðtn; tnþ1Þ; ðA:4Þ
uðtnÞ ¼ u0; utðtnÞ ¼ �V � ru0. ðA:5Þ
Actually, relation (A.3) implies that
V � nðut þ V � ruÞ ¼ 0 on ðC n C�Þ � ðtn; tnþ1Þ; ðA:6Þ

which is, clearly, a kind of generalized Neumann boundary condition (perfectly absorbing for the pure advec-
tion problem considered here). As shown in, e.g., [6] or [8, Chapter 6], the formulation (A.3)–(A.5) of problem
(A.2) is well-suited to solution methods via standard finite element approximations like the globally continu-
ous and piecewise affine ones used to compute the velocity in (3.7) and (3.9).
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